Effect of pazopanib on tumor microenvironment and liposome delivery.
نویسندگان
چکیده
Pathologic angiogenesis creates an abnormal microenvironment in solid tumors, characterized by elevated interstitial fluid pressure (IFP) and hypoxia. Emerging theories suggest that judicious downregulation of proangiogenic signaling pathways may transiently "normalize" the vascular bed, making it more suitable for drug delivery and radiotherapy. In this work, we investigate the role of pazopanib, a small-molecule inhibitor of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptors, on tumor IFP, angiogenesis, hypoxia, and liposomal drug delivery. Nude mice bearing A549 human non-small cell lung cancer xenografts were treated with 100 mg/kg pazopanib (n = 20) or vehicle (n = 20) through oral gavage for 8 days, followed by a one-time intravenous dose of 10 mg/kg Doxil (liposomal doxorubicin). Pazopanib treatment resulted in significant reduction of tumor IFP and decreased vessel density, assessed by CD31 staining. Despite these trends toward normalization, high-performance liquid chromatography revealed no differences in doxorubicin concentration between pazopanib-treated and control tumors, with Doxil penetration from microvessels being significantly reduced in the pazopanib group. Additionally, tumor hypoxia, evaluated by CA-IX immunostaining and confirmed in a second study by EF5 expression (n = 4, 100 mg/kg pazopanib; n = 4, vehicle), was increased in pazopanib-treated tumors. Our results suggest that the classic definition of tumor "normalization" may undermine the crucial role of vessel permeability and oncotic pressure gradients in liposomal drug delivery, and that functional measures of normalization, such as reduced IFP and hypoxia, may not occur in parallel temporal windows.
منابع مشابه
A Mathematical Model of the Enhanced Permeability and Retention Effect for Liposome Transport in Solid Tumors
The discovery of the enhanced permeability and retention (EPR) effect has resulted in the development of nanomedicines, including liposome-based formulations of drugs, as cancer therapies. The use of liposomes has resulted in substantial increases in accumulation of drugs in solid tumors; yet, significant improvements in therapeutic efficacy have yet to be achieved. Imaging of the tumor accumul...
متن کاملImprovement of intratumor microdistribution of PEGylated liposome via tumor priming by metronomic S-1 dosing
The efficient delivery of nanocarrier-based cancer therapeutics into tumor tissue is problematic. Structural abnormalities, tumor vasculature heterogeneity, and elevated intratumor pressure impose barriers against the preferential accumulation of nanocarrier-based cancer therapeutics within tumor tissues and, consequently, compromise their therapeutic efficacy. Recently, we have reported that m...
متن کاملPretreatment with VEGF(R)-inhibitors reduces interstitial fluid pressure, increases intraperitoneal chemotherapy drug penetration, and impedes tumor growth in a mouse colorectal carcinomatosis model
Cytoreductive surgery combined with intraperitoneal chemotherapy (IPC) is currently the standard treatment for selected patients with peritoneal carcinomatosis of colorectal cancer. However, especially after incomplete cytoreduction, disease progression is common and this is likely due to limited tissue penetration and efficacy of intraperitoneal cytotoxic drugs. Tumor microenvironment-targetin...
متن کاملEvaluation of naloxone and alum adjuvants effect in HPV vaccine on immunoediting of mice in tumor microenvironment
Background: Papilloma viruses are pathogenic double-strand DNA viruses that genotypes 16 and 18 are the cause of more than 50 percent of cancers as cervical cancer. Although vaccination is one of the best options for the papilloma cancer prevention but that is the most of world healthy problem, it is attempted to evaluate both naloxone (NLX) and alum mixture used as adjuvants together with HPV1...
متن کامل[Development of siRNA delivery strategy by active control of tumor microenvironment].
Efficient systemic siRNA delivery to cells in the target tissue is a current critical challenge in the drug delivery field. Several studies have demonstrated that nanoparticles such as polyethylene glycol (PEG)-coated siRNA-lipoplexes may enhance the systemic delivery of siRNA to tumor. However, the disordered tumor microenvironment still poses a potential impediment with respect to the efficie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 9 6 شماره
صفحات -
تاریخ انتشار 2010